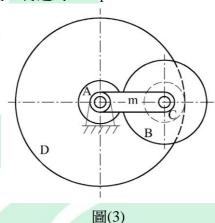
100 學年度四技二專統一入學測驗 機械群專業(一) 試題

第一部份:機件原理(第1至20題,每題2.5分,共50分)

- 7. 下列關於離合器的敘述,何者不正確?
 - (A)流體離合器其結合與分離時所產生之衝擊較方爪離合器小
 - (B)圓盤離合器是屬於摩擦離合器
 - (C)方爪離合器作連接時,兩軸須停止迴轉
 - (D)超越式離合器當主動軸正、逆轉時,均能傳遞扭矩。
- 8. 一組皮帶輪傳動裝置,主動輪直徑 30cm,從動輪直徑 20cm,中心距 200cm,分別使用交叉皮帶與開口皮帶連結,若比較兩種連結方式的皮帶長度,下列敘述何者正確?
 - (A)交叉皮帶比開口皮帶長 3cm
- (B)交叉皮帶比開口皮帶長 6cm
- (C)開口皮帶比交叉皮帶長 3cm
- (D)開口皮帶比交叉皮帶長 6cm。
- 9. 鏈條經長時間使用後,因鏈節磨損而長度增加,易導致鏈條自鏈輪脫落,使用下列何種鏈條可以改善此種情況?
 - (A)倒齒鏈
- (B)塊狀鏈
- (C)滾子鏈
- (D)鉤節鏈。
- 10. 兩圓柱形摩擦輪,兩軸相互平行且迴轉方向相同,軸心距 50cm,若兩摩擦輪間無滑動,且小摩擦輪的轉速為大摩擦輪的 3 倍,則小摩擦輪的直徑為多少 cm?
 - (A)15
- (B)25
- (C)50
- (D)75 °
- 11. 兩嚙合之外接正齒輪,模數為 5,轉速比為 2:1,輪軸中心距為 225mm,若小齒輪之輪齒作用角為 18°,則該對齒輪的接觸率(contact ratio)為何?
 - (A)1.5
- (B)1.6
- (C)1.7
- (D) $1.8 \circ$
- 12. 一壓力角 20°之公制全深齒正齒輪,其齒冠等於模數,齒根等於 1.25 倍模數。若齒深為 9mm,外徑為 128 mm,則其齒數應為多少?
 - (A)29
- (B)30
- (C)31
- (D) $32 \circ$

(D) $800 \circ$

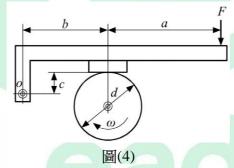
13. 一複式齒輪系如圖(2)所示, A 輪為主動輪, 其轉速為 100 rpm, 則從動輪 B 的轉速為多少 rpm?


(B)200 (C)400 A 60 T 30 T 48 T 12 T

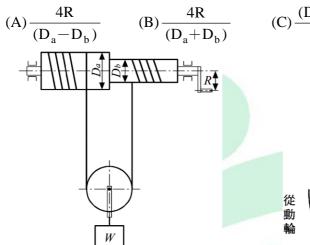
圖(2)

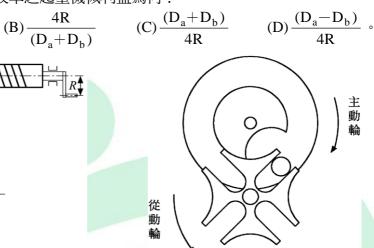
В

- 14. 一周轉輪系如圖(3)所示,齒輪 A、B 與 C 的齒數分別為 10 齒、20 齒與 10 齒,而 D 為 50 齒之內齒輪,齒輪 B 與 C 為一體且套於同一軸線,若齒輪 A 順時針旋轉,轉速為 300rpm,齒輪 D 逆時針旋轉,轉速為 52rpm,下列敘述何者正確?(A)輪系臂 m 順時針旋轉,轉速為 10rpm
 - (B)輪系臂 m 逆時針旋轉,轉速為 20rpm
 - (C)齒輪 B 順時針旋轉,轉速為 90rpm
 - (D) 齒輪 B 逆時針旋轉,轉速為 120rpm。


15. 一塊狀制動機構如圖(4)所示,其中鼓輪順時針旋轉,施力槓桿作用力 F 向下,煞車塊與鼓輪間的摩擦係數為 μ ,若不計構件重量及軸承摩擦之影響,且要避免該制動機構發生自鎖(self-locking)作用,下列關係式何者正確?

$$(C)c > \mu b$$


- 16. 一凸輪驅動機構,當從動件呈現等加、減速度運動時,下列敘述何者正確?
 - (A)從動件位移圖呈現傾斜直線
- (B)從動件位移圖呈現水平直線
- (C)從動件速度圖呈現傾斜直線
- (D)從動件速度圖呈現拋物曲線。
- 17. 若從動件運動屬於旋轉角控制型態,則下列哪一種凸輪設計較適合?
 - (A)圓柱型凸輪
- (B)圓錐型凸輪
- (C)三角凸輪
- (D)球型凸輪。


18. 一曲柄搖桿四連桿機構,若搖桿為主動件,則曲柄之全程運動路徑將發生幾個死點(dead point)?

(A)1

- (B)2
- (C)3
- (D)4 °

19. 一中國式絞盤滑車(以下簡稱絞車)如圖(5)所示,其中收捲鼓輪直徑為 Da,送捲鼓 輪直徑為 D_b,施力柄旋轉半徑為 R,起重物之重量為 W,若不計絞車機件重量 及摩擦損失,則該絞車之起重機械利益為何?

圖(6)

20. 圖(6)所示之間歇運動機構,若主動輪轉速為 240rpm,則從動輪的運動週期為多 少秒?

(A)0.1

(B)0.5

(C)1

 $(D)2 \circ$

第二部份:機械力學(第 21 至 40 題,每題 2.5 分,共 50 分)

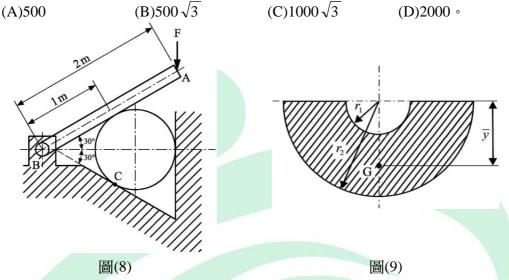
21. 有關向量與純量之物理量敘述,下列何者正確?

(A)位移、速度、加速度都是向量 (B)時間、距離、速率都是向量

圖(5)

(C)力、力矩、力偶都是純量

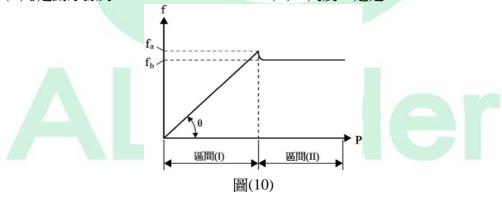
(D)重量、動量、衝量都是純量。

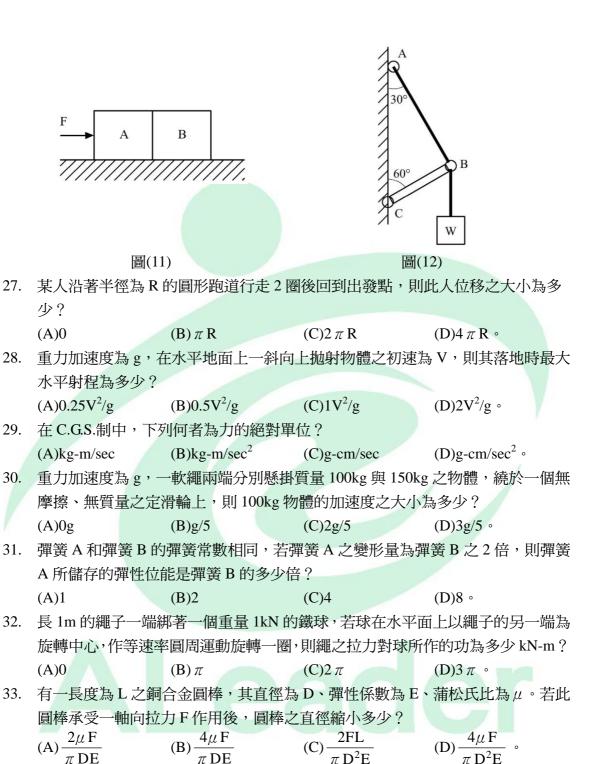

22. 如圖(7)所示為手提袋掛於牆上的掛鉤,手提袋重 W=100N,則此手提袋繩的張 力是多少 N?

(A) $\frac{50}{\sqrt{3}}$

(B)50

(D) $100 \circ$


23. 如圖(8)所示,AB 斜桿壓制一圓柱體,斜桿與圓柱體之重量可忽略不計,斜桿左端為銷連結,右端受到一垂直向下外力 F=1000N,若各物體接觸面皆為無摩擦之光滑表面,則圓柱體與地面接觸之 C 點反作用力是多少 N?


- 24. 如圖(9)所示之斜線區域,其半徑 $r_1=3cm$, $r_2=9cm$,若 G 點為該斜線區域之形 心位置,則 \bar{y} 是多少 cm ?
 - $(A)\frac{8}{\pi}$
- $(B)\frac{13}{\pi}$
- $(C)\frac{16}{\pi}$
- (D)6 °
- 25. 當物體置於平面,受水平推力 P 作用,令物體與平面之間摩擦力為 f,如圖(10) 所示為水平推力 P 與摩擦力 f 之關係示意圖,下列敘述何者正確?
 - (A)在區間(I),物體是運動的
- (B)f_b是最大靜摩擦力

(C)fa是動摩擦力

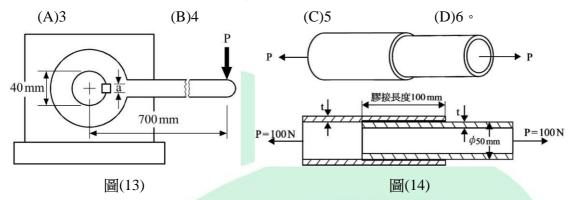
(D) θ 角度一定是 45°。

- 26. 如圖(11)所示,水平外力 F 作用於兩個緊鄰的物體 A 與 B,已知物體 A 質量 10kg,物體 B 質量 20kg,物體 A 及物體 B 與地面間之靜摩擦係數分別為 0.5 及 0.25,則可使得兩物體即將開始產生滑動的最小外力 F 為多少 N(重力加速度 $g=9.8m/sec^2$)?
 - (A)10
- (B)30
- (C)49
- (D)98 °

(B)6

多少 mm²?

(A)2


34. 如圖(12)所示,一物體 W 之重量 2000N,以 AB 吊索及 BC 鋼桿之結構支撐其重

量,若鋼桿之降伏應力為500MPa,安全因數為5,則BC桿之截面積至少應為

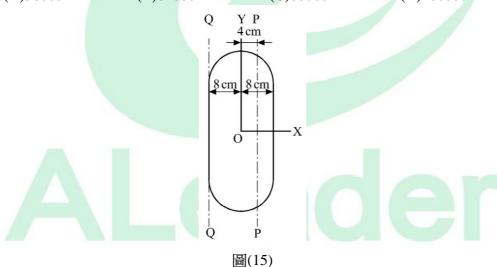
(C)10

(D) $25 \circ$

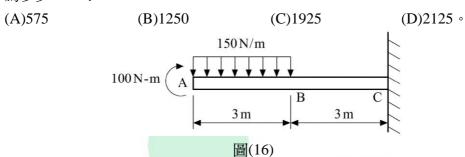
35. 如圖(13)所示,有一長 700mm 之搖桿,以一方鍵傳達扭力於直徑 40mm 之軸上,若方鍵之長度為 10mm,方鍵之剪應力不得超過 70MPa,當搖桿之末端施加一負荷 P=100N,則方鍵之寬度尺寸 a 最小應為多少 mm?

36. 兩塑膠管以膠接黏合如圖(14)所示,兩管之管壁厚度 t=5mm,膠接黏合之長度 為 100mm,接合部位之直徑為 50mm,接合後管件兩端受 100N 之拉力作用,則 膠黏處之平均剪應力約為多少 N/m²?

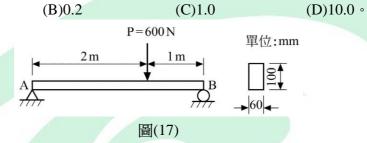
(A)3266


- (B)6366
- (C)7544
- (D)20000 °
- 37. 如圖(15)所示之面積為 1000cm^2 ,X 軸與 Y 軸均為形心軸,P 軸、Y 軸與 Q 軸之間相互平行,若此面積對 P 軸之慣性矩為 52000cm^4 ,則此面積對 Q 軸之慣性矩為 5900cm^4 ?

(A)36000



(C)88000


(D)100000 °

38. 如圖(16)所示之懸臂樑,若不計樑本身重量,則此樑產生最大之彎曲力矩(絕對值) 為多少 N-m?

39. 如圖(17)所示之簡支樑,長度 3m,樑之斷面尺寸為 60mm×100mm,若樑本身重量不計,則樑內之最大剪應力為多少 MPa?

40. 一空心圓軸外直徑為 20mm,內直徑為 10mm,若材料承受 314N-m 之扭矩作用, 則此軸內徑表面之剪應力為多少 MPa?

(A)65

(A)0.1

(B)88

(C)107

(D)132 °

ALeader

【解答】

1.(C)	2.(C)	3.(D)	4.(A)	5.(D)	6.(B)	7.(D)	8.(A)	9.(A)	10.(C)
11.(A)	12.(B)	13.(D)	14.(B)	15.(B)	16.(C)	17.(D)	18.(B)	19.(A)	20.(C)
21.(A)	22.(D)	23.(C)	24.(B)	25.(D)	26.(D)	27.(A)	28.(C)	29.(D)	30.(B)
31.(C)	32.(A)	33.(B)	34.(C)	35.(C)	36.(B)	37.(D)	38.(C)	39.(A)	40.(C)

100 學年度四技二專統一入學測驗 機械群專業(一) 試題詳解

- 1. 滾子與凸輪板之運動對(kinematic pair)屬於高對。
- 2. 差動螺旋其螺桿上的兩個螺旋,導程不同、螺旋方向相同。
- 3. 總機械效率= $N_A \times N_B \times N_C \times N_D$ 。
- 4. 翻上墊圈(upturn washer)屬確閉鎖緊裝置。

5. (1)壓應力
$$S_{C}$$
= $\frac{4T}{D \times H \times L}$ = $\frac{4 \times 6000}{\frac{60}{10} \times \frac{12}{10} \times \frac{100}{10}}$ =333.3N/cm²
(2)剪應力 S_{S} = $\frac{2T}{D \times W \times L}$ = $\frac{2 \times 6000}{\frac{60}{10} \times \frac{18}{10} \times \frac{100}{10}}$ =111.1N/cm²

6. (1):
$$\frac{1}{K_1} = \frac{1}{K} + \frac{1}{K} = \frac{1}{2} + \frac{1}{2} = 1 \Rightarrow K_1 = 1N/cm$$

(2): $K_A = K_1 + K = 1 + 2 = 3N/cm$
(3): $\delta_A = \frac{F}{K_A} = \frac{15}{3} = 5cm$

7. 超越式離合器是只允許主動軸在單一方向旋轉時,才能傳遞扭矩,又稱「自由輪」 或「單向離合器」。

8.
$$L=L_{\overline{\Sigma}}-L_{\overline{\mathbb{H}}}=\frac{D\times d}{C}=\frac{30\times 20}{200}=3cm$$

 倒齒鏈各鏈片自與輪接觸到分離,並無滑動產生,而能始終配合故無鏈條自鏈輪 脫落之虞。

11. (1)::
$$\frac{2}{1} = \frac{T_{+}}{T_{/J_{+}}}$$
......(1)
$$:: C = \frac{M(T_{+} + T_{/J_{+}})}{2}$$
.....(2)
由(1)式得 $T_{+} = 2T_{/J_{+}}$(3)

(3)式代入(2)式得
$$225 = \frac{5(2T_{J_1} + T_{J_1})}{2}$$
 $\Rightarrow T_{J_1} = 30$ 齒

(2):: C.R = 作用弧長
$$= \frac{R_P \times \theta}{P_C} = \frac{T_{J_1} \times \theta_{J_2}}{2\pi} = \frac{30 \times 18^{\circ}}{360^{\circ}} = 1.5$$

12. (1):
$$h=a+b=2.25M \Rightarrow M=\frac{h}{2.25}=\frac{9}{2.25}=4$$

(2):
$$D_0 = M \times (T+2)$$
 ⇒ $T = \frac{D_0}{M} - 2 = \frac{128}{4} - 2 = 30$ Ξ

13.
$$:e_{A/B} = \frac{N_B}{N_A} = \frac{60 \times 48 \times 144 \times 12}{30 \times 12 \times 48 \times 36} = 8 \Rightarrow N_B = 8 \times 100 = 800 \text{rpm}$$

14. (1):
$$e_{A/D} = \frac{N_D - N_m}{N_A - N_m} = \frac{-T_A \times T_C}{T_B \times T_D} = \frac{-10 \times 10}{20 \times 50} = \frac{-1}{10}$$

$$\therefore \frac{(-52) - (N_m)}{(300) - (N_m)} = \frac{-1}{10} \Rightarrow N_m = -20 \text{rpm}(逆時針旋轉)$$

$$(2) :: e_{A/B} = \frac{N_B - N_m}{N_A - N_m} = \frac{-T_A}{T_B} = \frac{-10}{20} = \frac{-1}{2}$$
$$:: \frac{(N_B) - (-20)}{(300) - (-20)} = \frac{-1}{2} \implies N_B = -180 \text{rpm}(逆時針旋轉)$$

15. (1):
$$\sum M_0 = 0$$

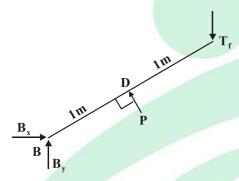
 $\Rightarrow F_n \times b - F_t \times c = F(b+a)$
 $\Rightarrow F_t(\frac{b}{\mu} - c) = F(b+a)$

(2)避免該制動機構發生自鎖(self-locking)作用,則必須 F>0

$$\Rightarrow \frac{\mathbf{b}}{\mu} - \mathbf{c} > 0$$
, $\mathbb{P} b > \mu \mathbf{c}$

- 16. 凸輪從動件呈現等加、減速度運動時,從動件位移圖呈現拋物曲線;而從動件速度圖呈現傾斜直線。
- 17. 球型凸輪,從動件運動屬於旋轉角控制型態。
- 18. 曲柄搖桿機構有 2 個死點(dead point)。

$$19. \quad M_a = \frac{4R}{D_a - D_b}$$


20. (1)
$$N_{\text{E}} = 240 \times \frac{1}{4} = 60 \text{rpm}$$

(2)
$$T = \frac{60}{N} = \frac{60}{60} = 1 \sec$$

22.
$$2T \sin 30 = 100 \implies T = 100N$$

23.
$$\Sigma M_B = 0$$

$$F \times \sqrt{3} = P \times 1$$
 ⇒ $P = 1000\sqrt{3}$ N= R_C (∵對稱)

24.
$$\overline{y} A = \sum A_i y_i$$

$$\Rightarrow \overline{y} \left(\frac{\pi \times 9^2}{2} - \frac{\pi \times 3^2}{2} \right) = \frac{\pi \times 9^2}{2} \times \frac{4 \times 9}{3\pi} - \frac{\pi \times 3^2}{2} \times \frac{4 \times 3}{3\pi}$$

$$\Rightarrow \overline{y} (9 - 1) = 9 \times \frac{4 \times 9}{3\pi} - 1 \times \frac{4 \times 3}{3\pi}$$

$$\Rightarrow \overline{y} = \frac{13}{\pi}$$

25. 因水平推力
$$\Rightarrow$$
故 $P=f$ $\Rightarrow \tan \theta = \frac{f}{P} = 1$ $\Rightarrow \theta = 45^{\circ}$

26.
$$F = \mu N = 0.5(10 \times 9.8) + 0.25(20 \times 9.8) = 98N$$

29.
$$F = ma$$
 $\Rightarrow \begin{cases} M.K.S.制 : N = kg \times \frac{m}{s^2} \\ C.G.S.制 : dyne = g \times \frac{cm}{s^2} \end{cases}$

30.
$$a = \frac{150-100}{150+100} \times g = \frac{1}{5} g$$

31.
$$U = \frac{1}{2} kx^2 \implies 2^2 = 4$$
 倍

33.
$$\delta = \frac{FL}{EA} \implies \frac{\delta}{L} = \frac{F}{EA}$$
$$\mu = \frac{\triangle d/d}{\frac{\delta}{L}} \implies \triangle d = a \times \frac{\delta}{L} \times d = \mu \times \frac{F}{EA} \times d = \mu \times \frac{F}{E \times \frac{\pi d^2}{4}} \times d = \frac{4\mu F}{\pi dE}$$

34. (1)n=
$$\frac{\sigma_{yp}}{\sigma_a}$$
 $\Rightarrow \sigma_a = \frac{500}{5} = 100$ MPa

$$(2)\frac{W}{T} = \frac{S_{BC}}{\frac{1}{2}} \implies S_{BC} = \frac{W \times \frac{1}{2}}{1} = 1000N = \sigma \times A$$

$$\therefore A = 10 \text{mm}^2$$

35. (1)
$$\Sigma M_0 = 0 \Rightarrow 100 \times 700 = F \times 20 \Rightarrow F = 3500N$$

$$(2)F = \tau \times A \Rightarrow 3500N = 70 \times a \times 10 \Rightarrow a = 5mm$$

36.
$$\tau = \frac{F}{A} = \frac{100}{\pi \times d \times L} = \frac{100}{\pi \times 0.05 \times 0.1} = 6366 \text{N/m}^2$$

37.
$$I = \bar{I} + AD^2$$

$$\Rightarrow \begin{cases} 52000 = \bar{I} + 1000 \times 4^2 & \Rightarrow \bar{I} = 36,000 \\ I_Q = 36,000 + 1000 \times 8^2 = 100,000 \end{cases}$$

38.
$$M=F\times x=450\times 4.5-100=1925N-m$$

39.
$$\tau_{\text{max}} = \frac{3V}{2A} = \frac{3 \times 400}{2 \times 6000} = 0.1 \text{MPa}$$

40.
$$\tau = \frac{\mathrm{Tr}}{\mathrm{J}} = \frac{314000 \times 5}{\frac{\pi}{32} [20^4 - 10^4]} = 107 \mathrm{MPa}$$

ALeader